JAL manual
describes jal v0.4-10

06-JAN-1999

(c) Wouter van Ooijen 1999

Unmodified duplication of this manual

in any form is allowed provided that

the author has been notified.

1
introduction
4
2
language
5
2.1
basics
5
2.1.1
format
5
2.1.2
comments
5
2.1.3
includes
5
2.1.4
program
6
2.1.5
scope
6
2.2
types
7
2.2.1
bit
7
2.2.2
byte
7
2.2.3
universal
7
2.3
literals
8
2.3.1
bit
8
2.3.2
universal
8
2.3.3
ASCII
8
2.4
constants
9
2.5
variables
10
2.5.1
declaration
10
2.5.2
location
10
2.5.3
volatile
10
2.5.4
alias
11
2.6
expressions
12
2.6.1
elements
12
2.6.2
operators
12
2.6.3
priority
12
2.6.4
order of evaluation
13
2.7
statements
14
2.7.1
declaration
14
2.7.2
assignment
14
2.7.3
if
14
2.7.4
while
15
2.7.5
for
15
2.7.6
forever
15
2.7.7
procedure call
15
2.7.8
return
16
2.7.9
assembler
16
2.8
subprograms
18
2.8.1
procedure
18
2.8.2
function
18
2.8.3
pseudo-variable
18
2.9
pragma's
20
2.9.1
name
20
2.9.2
target specification
20
2.9.3
jump_table
20
2.9.4
error
20
2.9.5
test
21
3
compiler
22
3.1
basics
22
3.2
command line
22
3.3
options
22
3.3.1
-t or -tN : test
22
3.3.2
-386 : run on 386-class machines
22
3.3.3
-c$: checks
22
3.3.4
-o$: optimizations
23
3.3.5
-s$: search
23
3.3.6
-v$: verbosity
23
4
code generation
24
4.1
compiler organisation
24
4.2
register allocation
25
4.3
byte expressions and assignments
25
4.4
bit expressions and assignments
25
4.5
pragma jump_table
26
4.6
pragma interrupt
26
4.7
SX specifics
26
5
libraries
28
5.1
target specification files
29
5.2
jlib
31
5.3
jpic
32
5.3.1
special function registers
32
5.3.2
IO port direction registers
33
5.3.3
the IO ports
33
5.3.4
indirect access to the file registers
33
5.3.5
access to the data eeprom
33
special instructions
34
5.4
jascii
35
5.5
jdelay
36
5.6
jseven
37
5.7
jstepper
38
5.8
jprint
39
5.9
interval
40
5.10
hd447804, hd447808
41
5.11
i2c
43
5.11.1
basic i2c routines
43
5.11.2
i2c transactions
43
5.12
lm75
44
5.13
serial
45
5.14
random3
46
5.15
cio
47
5.15.1
theory
47
5.15.2
configuration
47
5.15.3
low-level interface
48
5.15.4
high-level interface
48
6
summary
49
7
examples
50
7.1
e0001 : blink a LED
50
7.2
e0002 : night-rider LEDs
50
7.3
e0003 : line-following robot
51
7.4
e0004 : LCD temperature display
52
8
quick reference
55
9
SX
57
10
release notes
58

ts

introduction

Jal (Just Another Language) is a High Level Language for the Microchip PIC 16f84 (and the older 16c84) and Scenix SX18 and SX28 microcontrollers.

Jal is just another language. I created jal because I did not like any of the low-cost high-level languages for the 16f84 and implementing a high level language seemed a nice project. (And so it turned out, but also much more work than I had imagined.) Implementing an existing HLL seemed more difficult and less fun than creating my own, so I just started writing the compiler and the language evolved on the fly.

Jal is an algol-style meekly typed block scoped language. It looks a lot like Pascal, but if you want to call it a 'structured Basic' or a 'microcontroller Ada' that's fine with me. Most aspects of the language will be familiar to anyone who has experience in at least one mainstream HLL. A few of the more exotic features are pseudo-variables, no division between declarations and statements, named parameters with defaults.

The jal compiler is cardware: you are free to copy and use the compiler for whatever purpose you want, but I would like to be notified (by postcard, email or whatever) of any significant use . There is absolutely no warranty for the fitness of the provided software and documentation for any purpose. The use of jal for life-critical or weapons systems is explicitly forbidden.

You are even allowed to ask money for it, but you are not allowed to remove the GPL notice. There is no such obligation for the compiled version (hex file), so you can freely sell or (give away) a product which contains these libraries in compiled form.

All reactions (experiences, suggestions, projects, bugs, whatever) are welcome. If you have usefull jal code which you want to share I could put it in the jal library.

language

1.1 basics

1.1.1 format

The jal language is free-format (except for comments) and not case-sensitive (except for character literals and possibly include file names). All characters with an ASCII value below the space (tab, carriage return, newline, form feed etc.) are treated as spaces, except that the end of a line terminates a comment.

Jal does not uses statement separators. The only real seperators are the comma's between the (formal or actual) arguments to a procedure or function.

The jal syntax is based on tokes. Tokens must be separated by separators, hence spaces (or other separators) are needed between identifiers, operators etc.

examples
 -- if statement in preferred format

 if a > b then

 a = b + 1

 else

 a = b - 1

 end if

 -- but this has exactly the same effect

 if a b then a = b + 1 else a = b - 1 end if

 -- comma's between actual arguments

 f(a, b, c, d)

1.1.2 comments

A comment is started by the dubble minus token (--) and continues until the end of the line.

examples
 -- the next line contains a comment after the assignment

 ticks = ticks + 1 -- one more tick

 -- the next line contains an error: there is no *-- operator

 b = 2 *-- this is not a valid comment

1.1.3 includes

An include causes the content of the included file to be read.

A subsequent include for the same file name will be ignored. This makes it possible for a library file to include all required lower libraries.

Included files are sought first in the current directory, and next in each location indicated by the compilers search path. This feature can be used to override a standard library with a more specific one. Hence the library search path specified to the compiler should mention the more project-specific directories first.

Includes can be nested to any level.

examples
 include jjlib -- include the jal standard library

 include i2c -- include the i2c library

1.1.4 program

A jal program is a sequence of statements. Declarations are also considered statements, so declarations can appear almost anywhere in a program.

examples
 procedure p is

 var byte a -- declaration at start of block

 a = 5

 var byte b -- declaration between two executable statements

 b = a

 end procedure

1.1.5 scope

Jal is a block-structured language, so each declaration is visible from its declaration to the end of the block in which the declaration appears (in practice this means to the first end at the current nesting level).

A declaration can hide a declaration of the same name from an enclosing block. A declaration can not hide a name which was already declarared at same nesting level.

examples
 var byte b

 while b > 0 loop

 var bit b -- overrides the byte b

 b = false -- the bit b, not the byte

 var byte b -- this is an error

 end loop

types

1.1.6 bit

The type bit has two values, on (true, high) and off (false, low). In certain contexts (if and while statements) an expression of type bit is required.

examples
 var bit a = high

 var byte x

 a = x 5

1.1.7 byte

A byte is an 8-bit integer with modulo 256 semantics. Negative values are interpreted modulo 256 so (for expressions of the type byte) -1 and 255 are two notations of the same value.

examples
 var byte n = 1, m = 257

 if n == m then

 -- will be executed!

 end if

1.1.8 universal

Another type, universal, is available at compile time only. An expression which is not forced to be of a certain type is of the type universal. Such expressions can involve only constants, literals and build-in oprators and are evaluated by the compiler as signed integers of at least 32 bits.

examples
 const xtal = 10_000_000

 const mips = xtal / 4

literals

1.1.9 bit

The type bit has two literal values, on (true, high) and off (false, low).

examples
 pin_a0 = low

 pin_b0 = high

1.1.10 universal

Numerical literals can be base-2, base-10 or base-16. Base-10 is the default. An explicit base is specified by prefixing either 0b (for base-2), 0d (for base-10), 0x or 0h (for base-16).

A numerical literal has the type universal. An expression of type universal can be used whenever a byte is required, so numerical literals can be used as byte literals.

Underscores within numerical literals are ignored.

examples
 0b_0101_0101 -- a binary literal

 0x_55 -- the same value, now hex

 85 -- the same value, now decimal

1.1.11 ASCII

An ASCII literal is an alternative notation for the ASCII value of the indicated character. An ASCII literal can contain only a single character. An ASCII literal has the type universal.

examples
 "A" -- the capital A

constants

A constant declaration introduces a name which has a constant value throughout its scope. When the type is omitted the constant has the type universal. A single constant declaration can introduce a number of constants of the same type.

example
 const byte cr = 0x0D, lf = 0x0A -- byte constants

 const seconds_per_day = 60 * 60 * 24 -- universal integer constant

variables

1.1.12 declaration

A variable declaration introduces a name which corresponds to a storage location. Optionally the name can be bound to a specific location, otherwise the compiler allocates a suitable location.

Optionally a value can be assigned to the variable, which has the same effect as an equivalent assignment immediately following the declaration. The initial value does not need to be a constant expression.

As single variable declaration can introduce a number of variables, all of the same type.

examples
 var byte x, y = 3, z = f(14) -- scratch variables

1.1.13 location

A variable declaration can specify the location of the variable. The location is interpreted as a byte register address and (for bit variables) the bit within the register, 0 being the first bit. Both address expressions must be compile-time constant. A variable name can be used as byte address, which is interpreted as the byte address of that variable.

The addressing of variables ignores the banking used in some target architectures. Each address indicates a different addressable file register. The compiler takes care of the translation to the banked address.

examples
 var byte volatile port_a at 0x06 -- pic IO port A

 var bit volatile status_z at 3 : 2 -- pic zero flag

1.1.14 volatile

A variable can be declared volatile, which expresses that the variable does not posess normal variable semantics. For non-volatile variables the compiler assumes that

· an assignment can be optimized away if the same effect can be achieved in another way (for instance by substituting the assigned value when the variable is referenced)

· the variable will always contain the latest assigned value.

For a volatile variable:

· all assignments to the variable will be performed exactly as specified

· the variable can not be expected to hold the latest assigned value.

For non-volatile variables the compiler can optimize to its heart's content as long as observable effects (on volatile variables) remain identical. This can include deleting unnecessary assignments.

examples
 var volatile byte FSR at 4 -- indirection address register

 var volatile byte INDF at 0 -- indirection data register

 var volatile byte count -- a count which is used across resets

1.1.15 alias

A variable can be declared to be an alias for another variable. This is used much like a constant declaration to hide the actual identity of an identifier from subsequent code. An alias variable inherits the address of the aliased variable, not the volatility. examples
 -- fragment of the i2cp library file,

 -- which defines the pins used by the i2c library

 var byte volatile i2c_clock is pin_a3

 var byte volatile i2c_data_in is pin_a4

 var byte volatile i2c_data_out is pin_a4_direction

expressions

1.1.16 elements

An expression is constructed from literals, identifiers, function calls and operators. An identifier can identify a constant, a variable or (within a subprogram) a formal parameter.

1.1.17 operators

The predefined operators are:

PRIVATE
operator
priority
interpretation
left argument
right argument
result

!
5
monadic not

bit
bit

!
5
monadic not

byte
byte

+
5
monadic plus

byte
byte

-
5
monadic minus

byte
byte

*
4
multiplication
byte
byte
byte

/
4
division
byte
byte
byte

%
4
modulo
byte
byte
byte

+
3
plus
byte
byte
byte

-
3
minus
byte
byte
byte

<<
2
shift left
byte
byte
byte

>>
2
shift right
byte
byte
byte

>
2
larger than
byte
byte
bit

<
2
less than
byte
byte
bit

>=
2
larger than or equal
byte
byte
bit

< =
2
less than or equal
byte
byte
bit

==
2
equal
byte
byte
bit

!=
2
not equal
byte
byte
bit

&
1
and
bit
bit
bit

&
1
and
byte
byte
byte

|
1
or
bit
bit
bit

|
1
or
byte
byte
byte

^
1
xor
bit
bit
bit

^
1
xor
byte
byte
byte

The operators which are predefined can (for the same arguments) not be redeclared, so these operators have a fixed meaning. Other operators can be declared and redeclared by the user.

All operators which operate on bytes can also operate on universals. When the result from byte arguments is byte, the result from univeral arguments will be universal. When the result from byte arguments is bit, the result from univeral arguments will also be bit.

examples
 var byte a = 1 <<n

 if (a > b) | (c <d) | (x != y) then

 x = (x & 0b_1100_0011) | 0b_0001_0100

 end if

>

1.1.18 priority

Braces can be used to force the association, otherwise the operator's associate with their arguments according to operator's priority. For operators of equal priority the leftmost operator gets higher precedence.

examples
 var byte x = ! a + b -- is (! a) + b

 var y = ! (a + b) -- () used to force another interpretation

1.1.19 order of evaluation

The order in which independent parts of an expression are evaluated is not defined. A part of an expression might be evaluated more than once, a part which has no influence on the overall value of an expression might not be evaluated at all. Functions with side effects can make this behaviour noticable.

examples
 var byte n = 1

 function f return byte is

 n = n + 1

 return 3

 end function

 function g return byte is

 n = 2 * n

 return 4

 end function

 var byte a = f + g

 if n == 4 then

 -- might be executed, but don't count on it

 end if

statements

1.1.20 declaration

Declarations are considered statements, so declarations can appear anywhere in a program where a statement is allowed. examples

 a = f(9)

 var byte x = 1, y = 0 -- need a few locals here? no problem!

 while x < a loop

 y = y + x

 x = x + 1

 end loop

1.1.21 assignment

An assignment statement evaluates the expression and assigns its value to the variable or formal parameter indicated by the name on the left of the assignment. examples

 var byte a

 procedure p(byte out q) is

 q = 5 -- assign to the (out) parameter q

 a = 4 -- assign to the global variable a

 end procedure

 a = 5 -- assign to the (now local) variable a

1.1.22 if

An if statement evaluates the expression. If the result is true the list of statements following the then is executed.

Before the else part any number of elsif parts can appear. When the if condition is false, the first elsif condition is evaluated. If it is true the corresponding statements are executed, otherwise execution continues with the next elsif part.

When none of the if and elsif conditions evaluate to true the statements in the optional else part are executed.

The expressions in the if and elsif's must be of type bit. examples

 if a b then

 x = a

 else

 x = b

 end if

 x = x + 1

 if x 10 then

 x = x - 10

 end if

 if target_clock == 10_000_000 then

 -- code for a 10MHz xtal

 elsif target_clock == 4_000_000 then

 -- code for a 4MHz xtal

 elsif target_clock == 32_768

 -- code for a 32.768kHz xtal

 else

 -- what to do now?

 pragama error -- unsupported xtal

 end if

1.1.23 while

A while statement evaluates the expression. If the result is false, the while statement has completed its execution. Otherwise the statements are executed, after which the expression is evaluated again etc. The expression must be of type bit. examples

 procedure div_rem(

 bit in x, bit in y

 bit out d, bit out r

) is

 if y == 0 then

 -- what to do?

 else

 r = x

 d = 0

 while r y loop

 d = d + 1

 r = r - y

 end loop

 end if

 end procedure

1.1.24 for

A for statement causes the statements within the for to be executed the indicated number of times. examples

 procedure delay_1S is

 for 100 loop

 for 100 loop

 delay_100uS

 end for

 end for

 end procedure

1.1.25 forever

A forever statement causes the statements within the forever to be executed forever. It has the same effect as a while loop with the same statements and a constant true condition. examples

 forever loop

 pin_a0 = true

 delay_1S

 pin_a0 = false

 delay_1S

 end loop

1.1.26 procedure call

A procedure call invokes the procedure identified by the name, with the indicated actual arguments. This comprises the following steps:

1. The parameters which have in or in out direction gets the value which is indicated by the corresponding actual argument.

2. The statements which form body of the procedure are executed.

3. The actual arguments which correspond to an out or in out parameter get the value of that parameter.

For the association between actual arguments and parameters:

1. When no corresponding actual parameter is available the default declared in the procedure declaration is used.

2. It is an error when neither an actual parameter nor a default is available.

In the procedure body assignments to out or in out parameters might affect the actual parameter directly (pass by reference) or only at the end of the procedure (pass by value-result). The compiler is free to choose.

A procedure call which does not pass parameters has no braces. examples

 var byte a

 procedure p(byte in out x = a, byte in q = 5) is

 a = 0

 x = q

 if a == q then

 -- might be executed, but don't be sure

 end if

 end procedure

 p(a, 11) -- two actuals

 p -- same as p(a, 5)

 p(12) -- error, 11 can not be the actual for x

1.1.27 return

A return statement is used to terminate the excution of a procedure or function. For a function the return must be followed by an expression for the appropriate type. examples

 function root(byte in x) return byte is

 var byte n = 15

 forever loop

 if n * n <= x then

 return n

 end if

 n = n - 1

 end loop

 end function

1.1.28 assembler

A simple assembler statement consists of the word asm followed by a single assembler statement.

A full assembler statement consists of the word assembler, a sequence of label declarations, labels and assembler statements, and is terminated by end assembler.

A label must be declared before it is used and a declared label must be used exactly once to define a location. The scope of a label is from the declaration declaring the label up to the end of the assembler block.

Expressions used as assembler arguments must be compile-time constants. Variables used in these expressions evaluate to their lineair file register address. When needed the compiler will translate variable addresses to the banked address. The user is responsible for setting code page and register bank bits using the page and bank menmonics. For 16x84 targets the page
and bank menmonics are ignored. examples

 asm clrwdt -- single assembler statement

 procedure first_set(byte in x, byte out n) is

 assembler -- assembler block

 local loop, done

 clrf n

 loop :

 btfsc x, 0

 goto done

 incfsz n, f

 rrf x

 goto loop

 done :

 end assembler

 end procedure

subprograms

1.1.29 procedure

A procedure declaration declares a name for an argument list and a sequence of statements. The mechanism for passing arguments is described under the procedure call.

examples
 procedure zero(byte out x) is begin

 x = 0

 end procedure

1.1.30 function

A function declaration declares a name for an argument list, a sequence of statements and a return type.

When the execution of a function reaches the end of the statements the returned value is undefined.

examples
 function reverse(byte in x) return byte is

 byte y

 for 8 loop

 asm rrf x, f

 asm rlf y, f

 end loop

 return y

 end function

1.1.31 pseudo-variable

A pseudo-variable can be used like any other variable, but is implemented by a get and/or put routine. One of the two routines can be omitted, which makes the variable read-only or write-only. Alternatively a variable and a put or get routine can be declared, in which case the plain variable will be used for the missing routine.

A put procedure must have one byte in parameter, a get function must have no parameters.

examples
 procedure hd44780'put(byte in x) is ...

 hd44780 = "H"

 hd44780 = "e"

 hd44780 = "l"

 hd44780 = "l"

 hd44780 = "o"

 procedure async'put(byte in x) is ...

 function async'get return byte is ..

 forever loop

 byte c = async

 if (c = "a") & (c <= "z") then

 c = c + "A" - "a"

 end if

 async = c

 end loop

pragma's

1.1.32 name

The pragma name can be used to document the file name of a source file. The compiler checks that the stated name is indeed the current file name (the .jal extension must be omitted).

examples
 -- a comment can state anything:

 -- this is file xyz

 -- but when this compiles you can be sure

 -- that this is indeed file e0001!

 pragma name e0001

1.1.33 target specification

The target specification pragma's give the compiler information about the target. The target chip (16c84, 16f84, SX18, SX28) and oscillator setting (hs, xt, rc, lp or internal) must be specified. Optionally the watchdog (on or off, default off), protection (on or off, default off) and powerup delay (on or off, default on) can be specified. The clock frequency is not needed by the compiler, but some libraries (busy delay, interval delay, hd44780, asynch) need the clock frequency which is provided by the (pre-declared) global variable target_clock.

It is possibly to put all required pragma's in a project's source file, but it will often be easier to include one of the standard target files (16c84_4, SX28_50 etc.).

examples
 -- 16c84_14.jal

 pragma target chip 16c84

 pragma target clock 4_000_000

 pragma target osc xt

 pragma target watchdog off

 pragma target powerup on

 pragma target protection off

1.1.34 jump_table

The pragma jump_table informs the compiler that the current subprogram contains code which manipulates the program counter via the PCL register. The compiler will ensure that the PCLATH bits are set appropriatelty.

examples
 procedure _seven_table is

 pragma jump_table

 assembler

 addwf 2, f

 retlw seven_0

 ...

 retlw seven_f

 end assembler

 end procedure

1.1.35 error

The error pragma produces a compilation error when it reaches the code generation phase of the compiler. It can be used to check for certain errors at compilation time, for instance an un-anticipated clock frequency.

Note that constant expressions evaluation and dead branch elimination takes place even when all optimization is switched off, hence contructs like the one below will work even without optimization.

examples
 if target_clock < 4_000_000 then

 pragma error -- clock frequency must be at least 4 MHz

 end if

1.1.36 test

The test pragma's can be used for two purposes:

· testing the compiler's error detection mechanism

· testing the code generated by the compiler

The pragma test catch states that the next line should cause a compilation error at the indicated position. When this is the case the compiler will return a success condition, otherwise the compiler will return a failure condition.

examples
 var byte n

 pragma test catch 9

 var bit n

The pragma test assert states that during simulated execution at this point of the program the indicated variable should have the indicated value. The compiler contains an integrated CPU core simulator which is activated by the -t option.

The pragma test done states that the running simulation should be ended. The compiler will return a success status.

examples
 var byte a, b, c

 a = 5

 b = 6

 c = a * b

 pragma test assert c == 30

 c = a % b

 pragma test assert c == 5

 pragma test done

compiler

1.2 basics

The jal compiler is a command-line tool. The same compiler is available for the DOS command line (DPMI interface required), the windows command line (windows has a build-in DPMI interface), and for linux-386.

The minimum hardware required to run jal is a 386 (no 387 required) with 4Mb real memory and 10Mb virtual memory. For large programs more memory (both real and virtual) might be needed.

The jal compiler does not use compiled libraries: the total source of an application is compiled at once. This avoids some complexity in the compiler and allows global analysis and optimizations, but it makes the compilation process slower.

After a successfull compilation the jal compiler produces two output files. The base name (file name without extension) of these two files is the base name of the last file on the command line. The first output file has the extension .hex and contains the hex dump of the compiled program. This file can be used directly with most programmers. The second file has the extension .asm and contains the assembler (text) of the compiled program. This file can be used to inspect the generated code and to make small modifications. The assembler file can be assembled with the standard Michrochip assembler.

The compiler has a wealth of options to enable various debugging output.

1.3 command line

The jal command line can contains source files and options. An option starts with a '-', everything else is a source file. The catenation of all source files is compiled to a .hex and a .asm file.

1.4 options

1.4.1 -t or -tN : test

The -t option enables testing of the compiled program by the build-in simulator. Optionally the maximum number of instructions can be specified (default 10_000_000). By default no testing is done.

1.4.2 -386 : run on 386-class machines

The -386 option should be used when running on 386-class machines to get a reasonable compilation speed. It is equivalent to -vz -cX.

For the next options the lowercase letter enables and the corresponding uppercase letter disables. x enables (and X disables) all categories.

1.4.3 -c$: checks

The -c option switches checks on and off. The default is -cxBP: enable all checks except the memory pool and memory blocks. $ can be a sequence of:

 b : check the memory Blocks (modestly CPU intensive)

 p : check the memory Pool (awfully CPU intensive)

 a : check the internal Assertions

 s : check the Stack use

 z : Zero all memory before use

1.4.4 -o$: optimizations

The -o option switches optimizations on and off. The default is -ox: enable all optimizations. $ can be a sequence of:

 f : constant expression Folding

 r : strength Reduction

 s : tree Shape (expression reordening)

 c : tail Call chaining

 t : Trivial expression folding

 d : Dead code removal

1.4.5 -s$: search

The -s option adds $ to the list of directories to be searched for include files. The directories are searched in reverse order: the directory mentioned by the first -s option is searched last. The current directory is always searched first.

It is advised to put the library files which are provided in the JAL distribution in a lib subdirectory and always put a -slib option on the jal command line.

1.4.6 -v$: verbosity

The -v option switches logging on and off. This is mainly usefull for debugging the compiler. The default is -vz: only progress loggings. Enabling any other logging disables the progress logging. $ can be a sequence of:

 s : logging in the Scanner

 p : logging in the Parser

 o : logging in the Optimizer

 q : logging in the sQuasher

 r : logging in the Register allocation

 c : logging in the Code generator

 a : logging in the Assembler

 t : logging in the Test (simulator)

 z : show the progress of the various passes

examples

compile a single source file:

 jal file

serach the \jal\lib subdirectory, compile for a 16c84_4, use the jlib library, no optimizations, all checks but the memory pool, logging in the optimizer:

 jal -s\jal\lib 16c84_4 jlib file -oX -cxP -vo

code generation

This appendix gives some insight in how the compiler works. A reasonable knowledge of the PIC architecture is assumed.

1.5 compiler organisation

The JAL compiler is organized in a number of phases:

4. parse

5. optimize 1

6. squash

7. optimize 2

8. register allocation

9. code generation

10. assembly

11. simulate (optional)

The parse phase reads the input files, checks the syntax and semantics, and produces and internal abstract syntax tree which represents the source. Nearly all user error messages are generated in this phase. Two optimizations takes place: constant expressions are evaluated and if and while statements with a constant condition are replaced appropriately.

The syntax tree generated by the parse phase and worked upon by the subsequent phases is kept in memory. The nodes of the tree have a fixed size (~ 40 bytes). For each node the source location which caused the node to be generated is also stored (outside the node). This internal tree is the main reason the compiler uses large amounts of memory (a few megabytes) to compile even a medium size source.

The first optimize phase examines the tree and tries to transform it into a semantically equivalent tree which will generate better (smaller, faster etc.) code. Variables, statements and routines which are not used are removed. Tail calls are replaced by jumps to save stack entries. Some expressions are replaced by simpler ones (e.g. multiply becomes shift). Unused code and variables are removed. The tree is also simplified to reduce its size and to make the work of subsequent phases easier.

The squash phase replaces constructs in the tree which can not easily be translated to PIC instructions by semantically equivalent constructs which can, e.g. multiply and most shifts are replaced by calls to the run time library. This run time library is build into the compiler: it has nothing to do with the libraries which are provided with the compiler.

The second optimize phase performs the same optimizations as the first one, except for the few optimizations which would invalidate the work of the squash phase.

The register allocation phase scans the tree and assigns an address to all variables which do not yet have and address and need one. Variables which are never used will not get an address because they have been removed by the optimize phases.

The code generation phase replaces all constructs in the syntax tree with assembler instructions.

The assembly phase traverses the syntax tree and generates the assembler and hex files which are written to disk.

After the assembly phase the checks for the number of registers, the code size and the number of stack levels are done. When one of these checks fails the assembler file will still be a available to the user to see why his program uses so much resources, but the hex file will not be generated.

The optional simulate phase simulates the machine instructions in the internal copy of the hex file and checks the asserts.

The compiler code contains a large amount of consistency checks. When such a check fails the compiler will issue an error message and abort. An example of such a check is the assembly phase which verifies that each assembled machine instruction is available on the target architecture. The -386 option makes the compiler run somewhat faster by disabling most checks.

1.6 register allocation

During register allocation first all bit addresses are assigned, next all byte addresses. Bit and byte registers are hence not reused optimally when one part of the call tree uses lots of bits while the other part does not.

Within both categories addresses are assigned using the fixed stack algorithm: the compiler gives each variable the highest address it ever has in the call tree. This gives the illusion of a real stack without the expense. The down side is that the jal compiler can only compile a full program and that recursion is forbidden.

1.7 byte expressions and assignments

Byte expressions are evaluated in the w register. Operators which have no corresponding machine instruction (e.g. multiply) are replaced in the squash phase with a call to the run-time library. When necessary the squash phase will rearrange complex expressions (including function calls) and insert temporary variables.

A byte assignment first evaluates the expression in the w register and then moves the value to the appropriate file register.

The byte expressions and assignments in the next table are recognized as special cases.

PRIVATE
jal source fragment
assembler instructions

x = 0
clrf x

x = x + 1
incf x, f

x = x - 1
decf x, f

x = x << 1
clrc; rlf x, f

x = x >> 1
clrc; rrf x, f

x << 4
swapf y, w; andlw 0xF0

x >> 4
swapf y, w; andlw 0x0F

1.8 bit expressions and assignments

Bit assignments are translated into conditional bit set and clears. The first construct is used when either the target is volatile or the expression contains the target, otherwise the second (more compact) construct is used.

<LIT> if expression then
 target = true
 else
 target = false
 end if

 x = false
 if expression then
 target = true
 end if</LIT>
Bit expressions always appear as conditions. A bit expression is translated into a set of conditional skips and jumps. When possible a skip is used, otherwise the inverted skip over a jump is used. The code generated for an exclusive or operator will evaluate the second operand twice.

The following trivial bit assignments are recognized as special cases.

PRIVATE
jal source fragment
assembler instruction

b = true
bsf 31, 2

b = false
bcf 31, 2

1.9 pragma jump_table

A routine which has the pragma jump_table is coded in the last memory page. The jump table for volatile parameters is also put there. When the jump table and the routines do not fit in the last page an error message is generated. When a jump table or a routine with pragma jump table is present the page select bits.

1.10 pragma interrupt

Without interrupts the code which is generated starts at address 0. When one or more interrupt routines are present the code starts with a jump around the interrupt routines and the concatenated interrupt routines start at address 2.

pseudo variables and volatile parameters

A pseudo variable has a 'get function or a 'put procedure or both. The use of a pseudo variable generates the appropriate function or procedure call.

For each variable which is ever passed as a volatile parameter two jump table entries are generated, one for get and one for put. The index into the jump table is passed as the actual parameter. The use of a volatile parameter generates a call to the jump table with the passed index. The value is passed to or from the get and put procedures using a fixed (global) variable.

The compiler does not analyze the passing and use of volatile parameters. Hence it must assume that each use of a volatile parameter requires the maximum amount of stack used by any volatile put or get routine. This implies that use of a volatile parameter somewhere below a volatile put or get routine is not allowed because - as far as the compiler can know - it could require an infinite amount of stack entries.

1.11 SX specifics

The strange architecture of the SX (not totally their fault, it is actually an improvement on the midrange PIC architecture) requires some special care to keep the bank and page bits set correctly. The current compiler handles this in a correct but inefficient way: it simply puts the appropriate page or bank instruction before each normal instruction. The result is that SX code is about two times the size of 16x84 code.

Before a call, a jump or the use of a file register the page/bank selection bits are set. When the instruction which requires the selection bits to be set is preceded by a (conditional) skip the setting will be put before the skip. The SX specific instructions page and bank are used for the setting of the selection bits.

The SX does not have addlw and sublw instructions. The compiler first fills a temporary with the constant and then uses an addwf or subwf instruction. The parser accepts these instructions in inline assembly, but unless such instructions are eliminated before the actual assembly phase an error is generated. This makes it possible to use if statements to select the appropriate code for a specific target. Look at jdelay.jal for an example.

Each routine is entered via a jump in the lower half of the first page, even when the entry point to the routine is located in the lower half of a page so the routine could be called directly.

The compiler and the libraries produce code for an SX in turbo mode with the carry option disabled (add and subtract instructions do not take a previous carry into account) and RTCC mapped to address 1.

The compiler generates an assembler file which is compatible with MPASM. The SX-specific instructions are implemented as macro's. The page and bank instructions are called cpage and rbank to avoid conflicts with the MPASM page and bank directives.

The SX uses banked register addressing were the lower 16 registers are replicated in each bank. Hence the addressing of the scratch registers is not linear. The compiler uses a linear address to refer to each register. This value is returned by a movlw x instruction and expected by the memory_read and memory_write routines.

libraries

The jal libraries are covered by the GNU Library General Public License, which means that you are free to distribute either these libraries or derived versions. You are even allowed to ask money for it, but you are not allowed to remove the GPL notice. There is no such obligation for the compiled version (hex file), so you can freely give away or sell a product which contains these libraries in compiled form.

target specification files

These target specification files contain the pragma's for 6 common targets: the 16c84 at 4 and 10 MHz, the 16f84 at 4 and 10 MHz, the Secenix SX18 and SX28 at 50MHz external clock, and the SX18 and SX28 with 4 MHz internal clock.

examples
 -- the target files:

pragma name 16c84_4

pragma target chip 16c84

pragma target clock 4_000_000

pragma target osc xt

pragma target watchdog off

pragma target powerup on

pragma target protection off

pragma name 16c84_10

pragma target chip 16c84

pragma target clock 10_000_000

pragma target osc hs

pragma target watchdog off

pragma target powerup on

pragma target protection off

pragma name 16f84_4

pragma target chip 16f84

pragma target clock 4_000_000

pragma target osc xt

pragma target watchdog off

pragma target powerup on

pragma target protection off

pragma name 16f84_10

pragma target chip 16f84

pragma target clock 10_000_000

pragma target osc hs

pragma target watchdog off

pragma target powerup on

pragma target protection off

pragma name sx18_50

pragma target chip SX18

pragma target clock 50_000_000

pragma target osc hs

pragma target watchdog off

pragma target powerup on

pragma target protection off

pragma name sx28_50

pragma target chip SX28

pragma target clock 50_000_000

pragma target osc hs

pragma target watchdog off

pragma target powerup on

pragma target protection off

pragma name sx18_int_4

pragma target chip SX18

pragma target clock 4_000_000

pragma target osc internal

pragma target watchdog off

pragma target powerup on

pragma target protection off

pragma name sx28_int_4

pragma target chip SX28

pragma target clock 4_000_000

pragma target osc internal

pragma target watchdog off

pragma target powerup on

pragma target protection off

jlib

The jlib library just includes the following libraries:

These libraries are considered basic because they neither generate much overhead nor assume specific IO pin assignments.

jpic

The jpic library interfaces to the basic 16x84 and SX hardware:

Shadows of the tris and port values are maintained to avoid page switching and read-modify-write problems when individual pin values are modified. This induces a small code and file register overhead.

The portc and associated declarations are implemented only in the SX28. The eeprom is implemented only in the 16x84.

1.11.1 special function registers

The following special function registers are declared:

 var volatile byte indf at 0

 var volatile byte tmr0 at 1

 var volatile byte pcl at 2

 var volatile byte status at 3

 var volatile byte fsr at 4

 var volatile byte porta at 5

 var volatile byte portb at 6

 var volatile byte portc at 6

 var volatile byte eedata at 8

 var volatile byte eeadr at 9

 var volatile byte pclath at 10

 var volatile byte intcon at 11

 var volatile byte option

 var volatile byte trisa

 var volatile byte trisb

 var volatile byte trisc

The option variable is a pseudo-variable maintained by small routines. The porta .. portc and trisa ... trisc variables are explained in the next section.

The following bits are declared within the special function registers:

 var volatile bit status_c at status : 0

 var volatile bit status_dc at status : 1

 var volatile bit status_z at status : 2

 var volatile bit status_pd at status : 3

 var volatile bit status_to at status : 4

 var volatile bit status_rp0 at status : 5

 var volatile bit status_rp1 at status : 6

 var volatile bit status_irp at status : 7

 var volatile bit intcon_rbif at intcon : 0

 var volatile bit intcon_intf at intcon : 1

 var volatile bit intcon_t0if at intcon : 2

 var volatile bit intcon_rbie at intcon : 3

 var volatile bit intcon_inte at intcon : 4

 var volatile bit intcon_t0ie at intcon : 5

 var volatile bit intcon_eeie at intcon : 6

 var volatile bit intcon_gie at intcon : 7

1.11.2 IO port direction registers

The following pseudo-variables are provided which can be used either to the right or to the left of an assignment statement:

· port_a_direction, port_b_direction, port_c_direction (bytes)

· port_a_low_direction, port_a_high_direction, port_b_low_direction, port_b_high_direction, port_c_low_direction, port_c_high_direction (nibbles)

· pin_a0_direction .. pin_a4_direction, pin_b0_direction .. pin_b7_direction, pin_c0_direction .. pin_c7_direction (bits)

At startup all pins are inputs.

The following constants should be used to change directions:

· input, output (for bits)

· all_input, all_output (for nibbles and bytes)

For the half-port (nibble) variables the direction is according to the lower 4 bits. The higher 4 bits are ignored and read as 0.

1.11.3 the IO ports

The following pseudo-variables are provided which can be used either to the right or to the left of an assignment statement:

· port_a, port_b, port_c (bytes)

· port_a_low, port_a_high, port_b_low, port_b_high, port_c_low, port_c_high (nibbles)

· pin_a0 .. pin_a4 pin_b0 .. pin_b7, pin_c0 .. pin_c7 (bits)

For the half-port (nibble) variables the value is according to the lower 4 bits. The higher 4 bits are ignored and read as 0.

1.11.4 indirect access to the file registers

The following routines are provided to get and put data at a specified file register:

 procedure file_get(byte in a, byte out d)

 procedure file_put(byte in a, byte in d)

The address passed to the file_get and file_put routines must be a linear address. The linear file register addresses are consequtive and non-overlapping.

1.11.5 access to the data eeprom

The following routines are provided to get and put data at a specified data eeprom address:

 procedure eeprom_get(byte in a, byte out d)

 procedure eeprom_put(byte in a, byte in d)

The eeprom_put routine waits (busy looping) for the write to complete.

special instructions

 procedure sleep

The sleep procedure is equivalent to an asm sleep statement.

 procedure clear_watchdog

The clear watchdog procedure is equivalent to an asm clrwdt statement.

 procedure swap_nibbles(byte in out x)

The sleep procedure is equivalent to an asm swapf x,f statement.

 procedure page_0

 procedure page_1

These procedures are equivalent to option_rp0 = false and option_rp0 = true.

jascii

The jascii library provides the ascii constants for non-printable characters.

 const byte ASCII_NULL = 00

 const byte ASCII_SOH = 01

 const byte ASCII_STX = 02

 const byte ASCII_ETX = 03

 const byte ASCII_EOT = 04

 const byte ASCII_ENQ = 05

 const byte ASCII_ACK = 06

 const byte ASCII_BEL = 07

 const byte ASCII_BS = 08

 const byte ASCII_HT = 09

 const byte ASCII_LF = 10

 const byte ASCII_VT = 11

 const byte ASCII_FF = 12

 const byte ASCII_CR = 13

 const byte ASCII_SO = 14

 const byte ASCII_SI = 15

 const byte ASCII_DLE = 16

 const byte ASCII_DC1 = 17

 const byte ASCII_DC2 = 18

 const byte ASCII_DC3 = 19

 const byte ASCII_DC4 = 20

 const byte ASCII_NAK = 21

 const byte ASCII_SYN = 22

 const byte ASCII_ETB = 23

 const byte ASCII_CAN = 24

 const byte ASCII_EM = 25

 const byte ASCII_SUB = 26

 const byte ASCII_ESC = 27

 const byte ASCII_FS = 28

 const byte ASCII_GS = 29

 const byte ASCII_RS = 30

 const byte ASCII_US = 31

 const byte ASCII_SP = 32

 const byte ASCII_DEL = 127

jdelay

The jdelay library provides busy delay routines. Each routine delays the amount of time indicated by its name, multiplied by its argument.

The busy delay routines require a clock frequency of either 10MHz or 4MHz.

These delay routines are accurate to a few percent. For more accuracy interval delays should be used.

The delay_1us (which is the most accurate) has a minimum delay time (3.6mS for 10MHz and 9mS for 4MHz) and a step (2mS for 10MHz, 4mS for 4MHz), and rounds the delay to the nearest possible value.

 procedure delay_1us(byte in x = 1)

 procedure delay_2us(byte in x = 1)

 procedure delay_5us(byte in x = 1)

 procedure delay_10us(byte in x = 1)

 procedure delay_20us(byte in x = 1)

 procedure delay_50us(byte in x = 1)

 procedure delay_100us(byte in x = 1)

 procedure delay_200us(byte in x = 1)

 procedure delay_500us(byte in x = 1)

 procedure delay_1ms(byte in x = 1)

 procedure delay_2ms(byte in x = 1)

 procedure delay_5ms(byte in x = 1)

 procedure delay_10ms(byte in x = 1)

 procedure delay_20ms(byte in x = 1)

 procedure delay_50ms(byte in x = 1)

 procedure delay_100ms(byte in x = 1)

 procedure delay_200ms(byte in x = 1)

 procedure delay_500ms(byte in x = 1)

 procedure delay_1s(byte in x = 1)

 procedure delay_2s(byte in x = 1)

 procedure delay_5s(byte in x = 1)

jseven

The jseven library provides declarations for seven segment display handling.

The library first includes jsevenp which contains the IO pin assignment. A local copy of this file can be adapted to accomodate a different IO pin assignment.

The the default jsevenp assumes that the segments a .. g will be connected to the bits 0 .. 6, the decimal point to bit 7, each segment turned on by a logical 1 (bit true).

The following constants (from jsevenp) define the individual segements

 const byte seven_segment_a

 const byte seven_segment_b

 const byte seven_segment_c

 const byte seven_segment_d

 const byte seven_segment_e

 const byte seven_segment_f

 const byte seven_segment_g

 const byte seven_segment_dp

The following constants define the patterns for the values 0 .. 15, and the space:

 const byte seven_space

 const byte seven_value_0

 const byte seven_value_1

 const byte seven_value_2

 const byte seven_value_3

 const byte seven_value_4

 const byte seven_value_5

 const byte seven_value_6

 const byte seven_value_7

 const byte seven_value_8

 const byte seven_value_9

 const byte seven_value_a

 const byte seven_value_b

 const byte seven_value_c

 const byte seven_value_d

 const byte seven_value_e

 const byte seven_value_f

The following routine returns the seven segment value corresponding to the argument x:
 function seven_from_digit(byte in x) return x

jstepper

The jstepper library provides routines for 4-phase unipolar stepper motors.

The provided routines are:
 procedure stepper_motor_full_forward(byte in out x)

 procedure stepper_motor_half_forward(byte in out x)

 procedure stepper_motor_full_backward(byte in out x)

 procedure stepper_motor_half_backward(byte in out x)

The stepper motors coils are assumed to be activated by a logical high value. The full step routines take less code than the half step routines. The full step routines can handle 2-coil exitation. Only the lower 4 bits of x should be used, the higher bits are ignored on input and will contain 0 on output.

jprint

The jprint library provides routines which print a value in various bases. Each routine takes the same arguments.

The provided routines are:
 procedure print_binary_8(

 byte volatile out target,

 byte in x,

 byte in leader = "0"

)

 procedure print_binary_4(...)

 print_decimal_3(...)

 print_decimal_2(...)

 print_decimal_1(...)

 print_hexadecimal_2(...)

 print_hexadecimal_1(...)

The target argument is the output destination. It must be a pseudo-variable ('put procedure) which can handle the successive writes.

The x argument is the value to be printed. The procedure which do not print the full argument will print only the number of least significant digits indicated by the procedure name.

The leader is the ASCII value which is printed instead of leading zero's. The default is "0", which causes leading zero's to be printed. A value of 0 (binary, not ASCII) will suppress printing of leading zero's.

interval

This library does not yet support the Scenix SX18 and SX28 targets.
The interval library provides interval delay routines, based on tmr0 timer interrupts.

First the required interval T must be prepared by calling one of the init_interval procedures. The interval time T which is initialized is equal to the time indicated by the name of the procedure multiplied by the argument value.

Now an interval expires at each multiple of T after the init_interval call.

A call to next_interval will return at the next interval expiration. The first interval after the init_interval call can take slightly longer than T. When a call to next_interval occurs when the interval has already elapsed the call can take the time equivalent to an argument of 255 to the corresponding init_interval call.

The interval delay library uses an interrupt routine, the timer tmr0 and (for most intervals) the prescaler. The one-time overhead is 17 instructions, 5 file registers and 1 stack entry.

The clock frequency must be either 10MHz or 4MHz.

The following routines are provided:

 procedure init_interval_1uS(byte in n = 1)

 procedure init_interval_2uS(byte in n = 1)

 procedure init_interval_5uS(byte in n = 1)

 procedure init_interval_10uS(byte in n = 1)

 procedure init_interval_20uS(byte in n = 1)

 procedure init_interval_50uS(byte in n = 1)

 procedure init_interval_100uS(byte in n = 1)

 procedure init_interval_200uS(byte in n = 1)

 procedure init_interval_500uS(byte in n = 1)

 procedure init_interval_1mS(byte in n = 1)

 procedure init_interval_2mS(byte in n = 1)

 procedure init_interval_5mS(byte in n = 1)

 procedure init_interval_10mS(byte in n = 1)

 procedure init_interval_20mS(byte in n = 1)

 procedure init_interval_50mS(byte in n = 1)

 procedure init_interval_100mS(byte in n = 1)

 procedure init_interval_200mS(byte in n = 1)

 procedure init_interval_500mS(byte in n = 1)

 procedure init_interval_1S(byte in n = 1)

 procedure next_interval

hd447804, hd447808

These libraries provide 4-bit (6 wire) and 8-bit (10 wire) interfaces to the Hitachi HD44780 LCD controller.

Both libraries first include hd44780p which contains the IO pin assignment. A local copy of this file can be adapted to accomodate a different IO pin assignment.

The provided routines are:
 procedure hd44780_clear

 procedure hd44780_position(byte in x)

 procedure hd44780_line1

 procedure hd44780_line2

 procedure hd44780_write(byte in x)

 var byte volatile hd44780

 procedure hd44780_define(

 byte in x,

 byte in d0,

 byte in d1,

 byte in d2,

 byte in d3,

 byte in d4,

 byte in d5,

 byte in d6,

 byte in d7

)

hd44780_clear clears the display and puts the cursor at the first position.

hd44780_position puts the cursor at the indicated position without clearing the display.

hd44780_line1 and hd44780_line2 put the cursor at the begin of the first and second line, without clearing the display.

hd44780_write writes the indicated character to the current cursor position and advances the cursor.

Assigning to hd44780 has the same effect as a hd44780_put call.

A call to hd44780_define defines the pattern for the character x. X must be in the range 0 .. 7. The bytes b0 .. b7 each define one row of the pattern. B0 defines the top row, b7 the bottom row. The least significant bit (b0) defines the rightmost pixel, a logical one (bit true) makes the pixel dark (for a reflexive display). The character is defined by a 5 * 8 matrix, so b4 defines the leftmost pixel.

example:
 include 16f84_10

 include jlib

 include hd447804

 hd44780_clear

 hd44780 = "H"

 hd44780 = "e"

 hd44780 = "l"

 hd44780 = "l"

 hd44780 = "o"

 hd44780 = " "

 hd44780 = "W"

 hd44780 = "o"

 hd44780 = "r"

 hd44780 = "l"

 hd44780 = "d"

i2c

This library provides routines for i2c operations.

The library first includes i2cp which contains the IO pin assignment. A local copy of this file can be adapted to accomodate a different IO pin assignment.

1.11.6 basic i2c routines

The following basic i2c routines are provided which can be used to construct i2c transactions:

 procedure i2c_put_start

 procedure i2c_put_put_read_address(byte in a)

 procedure i2c_put_write_address(byte in a)

 procedure i2c_put_ack

 procedure i2c_put_nack

 procedure i2c_wait_ack

 procedure i2c_put_byte(byte in d)

 procedure i2c_get_byte(byte out d)

 procedure i2c_put_stop

 procedure i2c_put_nack_stop

These routines are not needed when the i2c transaction routines or chip-specific routines are used.

1.11.7 i2c transactions

The following i2c transactions are provided:

 procedure_i2c_read_1(byte in a, byte out d)

 procedure i2c_write_1(byte in a, byte in d)

 procedure i2c_read_2(byte in a, byte out d1, byte out d2)

 procedure i2c_write_2(byte in a, byte in d1, byte in d2)

lm75

This library provides routines for interfacing the LM75 i2c temperature sensor.

This library includes the i2c library, which in turn includes the i2cp library where the i2c IO pins are defined. A local copy of this last file can be adapted to accomodate a different IO pin assignment.

The following lm75 routines are provided:

 procedure lm75_read_raw(

 byte in address,

 byte out d1,

 byte out d2

)

 procedure lm75_read_fdt(

 byte in address,

 bit out freezing,

 byte out degrees,

 byte out tenth

)

The lm75_read_raw returns the two data bytes read from the LM75's temperature register.

The lm75_read_fdt returns the temperature information in three variables:

· freezing indicates whether the temperature is below 0 degrees C

· degrees is the absolute temperature in degrees C

· tenth is the tength-of-a-degree part of the absolute temperature

serial

This library does not yet support the Scenix SX18 and SX28 targets.
This library provides busy-waiting serial asynchronous send and receive routines.

The library first includes serialp which contains the IO pin assignment, baudrate setting and polarity. A local copy of this file can be adapted to accomodate a different IO pin assignment and communication settings.

The provided routines are:
 asynch_send(byte in x)

 var byte volatile asynch

 asynch_receive(byte out x)

 asynch_poll(byte out x) return bit

A call to asynch_send sends the byte x on the serial line.

Assigning to asynch has the same effect as an asynch_send call.

A call to asynch_receive returns with a received byte in x. The call waits untill a byte is received.

A call to asynch_poll returns with a received byte in x. The call returns quickly when no byte can be received. The function result indicates whether a byte was received.

example:
 include 16f84_10

 include jlib

 include serial

 asynch = "H"

 asynch = "e"

 asynch = "l"

 asynch = "l"

 asynch = "o"

 asynch = " "

 asynch = "W"

 asynch = "o"

 asynch = "r"

 asynch = "l"

 asynch = "d"

 asynch = ASCII_CR

 asynch = ASCII_LF

random3

The random3 library provides pseudo-random bits and bytes from a 24-bit (3 byte) linear-feedback shift register.

The shift register which generates the pseudo-random data is not automatically initialised. This might be good or bad, depending on your application. Keep in mind that the initial content of the register file will still not be very random.

 procedure randomize(byte in n)

A call to this procedure initializes the FSR bytes to the value n and performs 24 shifts. This gives you a random starting point provided that you can come up with a random byte value. When you randomize with a constant value you will always get the same (pseudo!) random sequence.

 function random_bit return bit

This function returns a (next) pseudo-random bit.

 function random_byte return byte

This function returns a (next) pseudo-random byte.

cio

The cio (chained IO) library provides a way to extend the number of available input and output pins almost indefinitely by chaining shift registers. For outputs serial-in parallel-out shift registers are used, for inputs parallel-in serial-out versions. By default six PIC pins are required: a clock, data and a load pin for both the input and for the output chain.

The library first includes ciop which contains the IO pin assignment and various other options. A local copy of this file can be adapted to accomodate a different IO pin assignment.

1.11.8 theory

Output data is shifted out serially, filling the shift registers backward: the data for the most remote register is clocked out first, followed by the data for the other shift registers. When all registers are filled a parallel load is issued which transfers the data to the shift register output pins.

Input data is first loaded, then shifted in serially into the PIC. The data from the shift register nearest to the PIC is clocked in first.

The maximum number of shift registers is limited by the drive capacity of the PIC, clock skew problems (see below) and (often the most important) by the time required to update the full shift register chain. Depending on the load on the PIC pins and the amount of wiring an extra delay between level changes can be required, which increses the time needed to update the data in the shift register chain. Such a delay can be specified in the configuration file.

The schematics and layout should be designed to prevent clock skew problems: line delays and different clock input tresholds could cause the clock to be overtaken by the output data transitions, thus losing bits downstreams. Measures to prevent this can include using the same type of shift register throughout the chain, using a buffer to sharpen the clock edges, or using a shift register like the HEF4094 that has a delayed output, which practically eliminates clock skew problems.

When the output pins can tolerate glitches during the shifting (for instance when the chain is used to drive LED displays) a cheaper shift register without storage register like the 74HCT164 can be used, or the parallel load inputs of the registers can be activated permanently. In both cases and the load output pin of the PIC can be freed for other purposes.

When the polarities agree the load pins of the input and output chains can be shared, thus saving one pin. Alternatively the clock pins can be shared. Sharing both clock and load pins is also possible, but this requires that the application precedes each shifting in of the inputs by a shifting out of the outputs.

The data out pin and either the clock pins or the load pins can be shared with other uses, for instance the data lines of a HD44780 interface.

The electronic design should take into account that the initial state of the shift register output pins will be unknown.

With the default configuration (no extra delays) and a 16f84 at 10MHz a cio_out_8_load or cio_load_8_in call takes approximately 100 uS (jal V3.0-01).

1.11.9 configuration

The configuration file defines whether and input chain and / or an output chain is used, which PIC pins are used, the polarity of the pins, an optional delay between transistions, whether the parallel load are used for output and whether the clock or load pins are shared.

My favourite shift registers are the 8-bits 74HCT595 and HEF4094 (output) and 74HCT166 (input). The default configuration file is compatible with these chips. For chips which require a different polarity of data, load or clock signals the configuration file must be adapted.

1.11.10 low-level interface

 procedure cio_out_load

 procedure cio_out_byte(byte in data)

 procedure cio_in_load

 procedure cio_in_byte(byte out data)

The cio_out_byte and cio_out_load procedures can be used to fill the output chain (most remote shift regeister first) and load the data to the shift registers output pins.

The cio_in_load and cio_in_byte procedures can be used to load and read the input chain (nearest shift register first).

1.11.11 high-level interface

 procedure cio_out_1_load(byte in d1)

 ...

 procedure cio_out_8_load(byte in d1, ... byte in d8)

 procedure cio_load_1_in(byte out d1)

 ...

 procedure cio_load_8_in(byte out d1, ... byte out d8)

One of the cio_out_N_load procedures (N = 1 ... 8) can be used to transfer N data bytes and do the load. The first parameter to a cout_out_N_load procedure is the byte for the shift register nearest to the PIC.

One of the cio_load_N_in procedures can be used to do the load and transfer N data bytes. The first parameter to a cio_load_N_in procedure is the byte for the shift register nearest to the PIC.

summary

Jal is an algol-style meekly typed block scoped language. It looks a lot like Pascal, but if you call it a 'microcontroller Ada' or a 'structured Basic' that's fine with me.

The Jal build-in types are bit and byte for run-time variables and 32 bit 'universal integer' for compile-time calculations. Expressions are roughly the same as in C, but an assignment is not an expression. The available operators are: + - / * % ! & | ^ < < == != < = and =. Priority is as in C and () can be used for grouping. There are no restrictions on the complexity of expressions. The user can define operators, but the priorities are fixed and the build-in operators can not be re-declared.

Variables must be declared before use and can either be tied to a particular address or allocated by compiler using the static-stack algorithm. A declaration can be put wherever a statement can. The scope is from the declaration to the end of the smallest enclosing block.

Procedures and functions can have parameters. Each parameter has a name, a type, a mode (in, out or in-out) and optionally a default. Parameter passing is either by reference or by value-result (copying), whichever suits the compiler best. (Currently this is value-result except for volatile parameters which are passed as a pointer to their access routines.) A parameters can have a default, in which case no actual needs to be supplied. Function calls can be used in expressions, procedures can be called as stand-alone statements. When no parameters are supplied the () in a procedure or function call can be omitted.

The statements are: assignment, if-then-elsif-else, for, loop and procedure call. The else part of an if-then-else is optional. A loop can have a count (for 10 loop ...), a condition (while ... loop ...) or be unconditional (forever loop ...).

Put and get routines can be used to construct an interface which behaves like a variable. This is for instance used in jpic to hide the port value buffer which is needed to avoid the read-modify-write problem which is inherent in the PIC architecture.

In-line assembly is supported using the microchip syntax.

A CPU core simulator is build into the compiler. It is used to test the compiler. It might also be usefull for debugging and testing stand-alone code.

The compiler generates both a .hex file which can be downloaded directly to the target a .asm file which can be used with the microchip development tools.

examples

1.12 e0001 : blink a LED

The next program blinks a LED which is connected to pin A0 and (via a suitable resistor) to either Gnd or Vcc.

 [1] -- flash a LED on pin A0

 [2] include 16f84_10

 [3] include jlib

 [4] pin_a0_direction = output

 [5] forever loop

 [6] pin_a0 = on

 [7] delay_1s

 [8] pin_a0 = off

 [9] delay_1s

 [10] end loop

[1] Jal is a free format language. The end of a line has no special meaning, except that it terminates a comment. A comment starts with two dashes. The numbers [1] etc. are for reference only and are not part of the program!

[2] The target is a 16f84 with a 10MHz crystal.

[3] The jlib standard library is included.

[4] On power-up all pins are in the input (high impedance) state. This statement makes pin A0 an output.

[5] The main part of the program is an endless loop.

[6] Pin A0 is set high. High and on are synonyms for true. likewise low and off are synonyms for false. Output and input are declared in jlib. The jlib output routines use a port buffer to avoid the read-modify-write problem inherent to the PIC architecture.

[7] This call causes a busy delay of 1 second. Related calls exist for delays of (multiples of) 100mS, 10mS, 1mS and 100uS. The argument to the delay calls is a byte, so the range is 0..255. All calculations in jal are modulo calculations. For a byte this means that a specified value will silently be interpreted modulo 256. The default argument is 1, so the statement causes a delay of 1 second.

The various delay routines are the main reason that the target's clock frequency must be specified. If we had included 16f84_4 while using a 10MHz clock the actual delay would have been 2.5 seconds.

[8] Pin A0 is set low.

[9] Same call as in line [7]: a one second delay.

[10] This line indicates the end of the loop which was started in line [5].

1.13 e0002 : night-rider LEDs

The next program shows night-rider style LED display on port B.

 [1] include 16f84_10

 [2] include jlib

 [3]

 [4] -- night-rider LED display on port B

 [5] const bit to_right = 1

 [6] const bit to_left = 0

 [7]

 [8] procedure night(byte in out x, bit in out direction) is

 [9] if (x & 0b_1000_0000) != 0 then

 [10] direction = to_right

 [11] end if

 [12] if (x & 0b_0000_0001) != 0 then

 [13] direction = to_left

 [14] end if

 [15]

 [16] if direction == to_right then

 [17] x = x 1

 [18] else

 [19] x = x <<1

 [10] end if

 [21] end procedure

 [22]

 [23] b_direction = all_output

 [24] var byte x = 0b_0000_0001

 [25] var bit d = to_left

 [26]

 [27] forever loop

 [28] port_b = x

 [29] delay_100ms(2)

 [30] night(x, d)

 [31] end loop

>
[5] Jal does not support enumerates, so two constants of type bit are used to identify the current direction in which the LED pattern moves.

[8] The procedure night is declared which has two input-output parameters: the display and the current shift direction. Input-output parameters are copied to and from the actuals both before and after the procedure is executed. Input-only parameters are copied only before, and output-only parameters are copied only after the execution of the procedure.

[9,16] If the current display value has hit the left or right border the current shift direction is updated. The display value is AND-ed with 0b_000_0001 to detect a collision with the right border and with 0b_1000_0000 to detect a collision with the left border. The prefix 0b indicates a base-2 (binary) value. Other prefixes are 0h or 0x for hexadecimal and 0d (which is the default) for decimal. Underscores within a literal are ignored by the compiler but can be used to improve the readability.

[16] Depending on the current direction the display value is shifted one position to the right or to the left.

[23] This statement switches all pins of port B to output. All_output is decleared in jlib.

[24] The initial value of the display is 0b_0000_0001. A value of 0b_0000_0101 or 0b_0000_1111 would also produce a nice display.

[25] The initial direction is set to to_left. This could be omitted because the initial value of x cause the direction to be set immediatley.

[27] The infinite loop updates the PORT B value, waits 200 mS and calls the procedure night to calculate the next display value and possibly update the direction.

[28] For active-low LEDs this line could be changed to invert the x value before assigning it to port_b:

 [27] port_b = x ^ 0x0FF

1.14 e0003 : line-following robot

The next program controls a simple line-following robot which consists of two four-phase stepper motors and two reflective IR sensors. The robot follows a black line on a white background by stepping each motor only when the associated sensor sees white.

 [1] -- A line following robot:

 [2] -- port B drives two 4-phase stepper motors via an ULN2803.

 [3] -- a0 and a1 are connected to 2 white-is-low reflective sensors.

 [4] -- a2 and a3 drive 2 LEDs which show the state of the sensor inputs.

 [5]

 [6] include 16f84_10

 [7] include jlib

 [8]

 [9] port_b_direction = all_output

 [10] pin_a0_direction = input

 [11] pin_a1_direction = input

 [12] pin_a2_direction = output

 [13] pin_a3_direction = output

 [14]

 [15] procedure steppers(byte in a, b) is

 [16] port_b = a + (b < < 4)

 [17] delay_1mS(10)

 [18] end procedure

 [19]

 [20] var byte left_stepper = 0b_0001

 [21] var byte right_stepper = 0b_0001

 [22]

 [23] forever loop

 [24] pin_a2 = pin_a0

 [25] pin_a3 = pin_a1

 [26]

 [27] if ! pin_a0 then

 [28] stepper_motor_half_forward(right_stepper)

 [29] end if

 [30] if ! pin_a1 then

 [31] stepper_motor_half_forward(left_stepper)

 [32] end if

 [33]

 [34] steppers(left_stepper, right_stepper)

 [35] end loop

[15] The procedure Steppers is declared which has two input-only parameters.

[16] Port B is set to the appropriate value for driving the one stepper motor from pins B0 .. B3 and the other one from pins B4 .. B7.

[17] This delay between each step is appropriate for the stepper motors used in older 5-1/4 inch diskdrives. The argument to the delay is a byte, so it must be in the range 0 .. 255.

[18] Two variables are declared to hold the current steering value for each stepper motor. The initial values for both motors is 0b_0001.

[24] The indicator LEDs are set according to the values of the sensor inputs.

[27] Each stepper motor value is advanced one (half) step only when the associated sensor input is low. The procedure Stepper_Motor_Half_Forward is declared in jlib. Alterantively Stepper_Motor_Full_Forward could be used. Note that jal is not case sensitive.

[34] The Steppers procedure is called to provide the new steering to the motors and wait the appropriate time before the next step.

1.15 e0004 : LCD temperature display

The next program reads the temperature from an LM75 using the i2c protocol, and writes the result to an LCD controlled by a Hitachi HD44780.

 [1] -- a temperature display using

 [2] -- an LM75 and a HD44780 LCD controller

 [3]

 [4] include 16c84_10

 [5] include jlib

 [6] include lm75

 [7] include hd447804

 [8]

 [9] const lm75_address = 0

 [10]

 [11] hd44780_clear

 [12]

 [13] forever loop

 [14]

 [15] var byte t, d

 [16] var bit f

 [17]

 [18] lm75_read_fdt(lm75_address, f, d, t)

 [19]

 [20] hd44780_line1

 [21] if f then

 [22] hd44780 = "-"

 [23] else

 [24] hd44780 = "+"

 [25] end if

 [26] print_decimal_2(hd44780, d, " ")

 [27] hd44780 = "."

 [28] print_decimal_1(hd44780, t, "0")

 [29]

 [30] delay_200mS

 [31]

 [32] end loop

[6,7] The i2c and hd447804 libraries must be included explicitly because they are not part of jlib. Refer to the i2cp and hd44780p library files for the IO pin assignments used. When your target circuit uses different IO pins you should make a local copy of these files and edit that copy.

[9] This constant defines the 3-bit i2c address of the LM75 as configured by the LM75's A0 A1 and A2 pins. The LM75 routines will set the higher bits of the address (0b_1001 for an LM75).

[11] The LCD display is cleared.

[15,16] The variables for reading the LM75 are declared. It is a good idea to declare variables within smallest possible scope.

[18] The LM75 is read.

[20] The cursor in the HD44780 is put back to the first position. Using HD44780_clear at this point would cause some flickering of the display.

[21] First the sign is written. HD44780 is a pseudo-variable: each assignment to this variable invokes a procedure which writes the value to the display and advances the cursor.

[26] The temperature is written using the print_decimal_2 procedure. The HD44780 pseudo-variable is passed as destination of the formatted string. The second argument is the value to be written. The last argument is the ASCII value to use for leading zero's. Here we supply a space.

[27,28] After the decimal point the tenth degree value is printed. Print_decimal_1 is used which prints only one digit. A "0" is supplied for leading zero's, so either "0" or "5" is printed.

[30] A little delay is inserted to limit the update speed.

quick reference

basics
not case sensitive, free format, but put a space between each token

-- coments start with -- and continue up to the end of the line

include jlib -- include the standard library

types
bit : 1 bit

byte : 8 bit, modulo-256

universal : only during compilation, at least 32 bits signed

literals
bit : true/high/on, false/low/off

universal : decimal, based (0b..., 0d..., 0h..., 0x...)

byte : "A"

a universal expression in a byte context is coerced to byte

constants
const bit light = low, blank = high -- bit constants

const byte pattern = 0b_0101_0101 -- byte constant

const ips = clock / 2_500_000 -- universal constant

variables
var bit done = false

var volatile byte status at 3

var volatile bit status_c at status : 3

var i2c_out is pin_a3_direction

expressions
prefix

 bit-bit : !

 byte-byte : + -

infix

 bit,bit-bit : & | ^

 byte,byte-bit : <>= <= == !=

 byte,byte-byte : & | ^ + - * / %

a universal can be used when a byte is required

for each byte,byte-byte there is also a universal,universal-universal

statements
var byte a -- a declaration is a statement!

a = 15

if a 5 then ... end if

if a 0 then ... else ... end if

if a == 1 then ... elsif a == 2 then ... else ... end if

while ! done loop ... end loop

for 5 loop ... end loop

forever loop ... end loop

delay_1S(5)

asm clrwdt

assembler ... end assembler

procedures and function declarations
procedure wait is for 100 loop asm nop end loop end procedure

procedure put(byte in x) is ... end procedure

function get return byte is ... return x ... end function

pseudo-variables
procedure x'put(byte in x) is ... end procedure

function x'get return byte is ... end function

SX

SX is the generic name for the Scenix SX18 and SX28, which are almost the same. For a jal programmer the only difference is that the SX18 comes in an 18 pin DIL package and the SX28 comes in an 28 pin (slimline) DIL package. Due to the smaller package the SX18 does not provide pins for the C port, hence the SX18 has 12 general-purpose IO pins and the SX28 has 20. There is also an SX20 which is just an SX18 with two extra unconnected pins.

The SX is a clone of the 12 bit PIC architecture (pic 16c54 etc.) with some (configurable) extensions. JAL always configures the SX for an 8-level stack, single-cycle execution (turbo mode) and no carry in for the arithmetic instructions.

The SX is a single-chip microcomputer in an 18 or 28 pin package. 12 or 20 pins are available for general-purpose I/O. The chip has 2K of electrically (re-) programmable program memory, 128 bytes of RAM (called registers in Microchip/Scenix terms) and an 8-level return stack. There is no simple way to expand any of these on-chip resources. Most instructions take one clock cycle, so the peak CPU horsepower is 50MIPS at the maximum clock frequency of 50MHz. However the instructions which change the PC (goto, call, return, btfss, btfsc and instructions which manipulate the PC directly) take three clock cycles, and the banked (register) and paged (code) architecture requires a lot of extra instructions so direct comparisons between the SX and the 16x84 (14 bit PIC architecture) requires some care.

release notes

Known problems in the current version (0.4-10)
· The code generated for the SX chips is functionally correct but not very compact (expect 2 to 3 times more code than for a 16x84).

· Some library functions (interval delays, asynchronous interface) do not yet support the SX chips. Such functions will produce an error message at compilation time when used with an SX target.

version 0.4-10 (17-Apr-1999)
First version with Scenix SX support. Eeprom routines corrected. Some HD44780 routines corrected. Small corrections in the manual. For 0 loop (which could loop 256 times) corrected.

version 0.4-01 (10-Mar-1999)
movlw x to get the address of x; bcf y etc. for bit variables

version 0.3-02 (07-Feb-1999)
Bug fixed for (x ^ y). Cio library added.

version 0.3-01 (10-Jan-1999) new features
Better and more libraries. Better code generation. Some simple optimizations. The compiler is faster and uses less stack and heap. The assembler output is compatible with mpasm2. The assembler output contains the command line, compilation statistics and shows the variable allocation. Reasonable documentation (in html).

version 0.2-20 (04-Oct-1998) new features
Available for dos/windows (compiled with djgpp) and for linux-386. Type checking. Unlimited expressions. Support for multiply, divide, remainder and shifts. Volatile variables and parameters. Get and Put routines. Target pragma's. Introduction document with examples. Constants expressions. Libraries reworked.

version 0.1 (22-Jun-1998) summary
First public version. Compiled first with lcc (runs only in DOS box under windows) later also with djgpp. No bit variables. No multiply and divide. Shifts only one position. Inefficient variable allocation. Volatile variables ('register') but no volatile parameters. No documentation, only an example. The only type checking is in the code generator which will (often) panic on illegal constructs.

PAGE
6

